On ADMM in Deep Learning: Convergence and Saturation-Avoidance

Jinshan Zeng/曾锦山 (Jiangxi Normal University)

27-Dec-2020, 09:15-10:00 (5 years ago)

Abstract: In this talk, we introduce an alternating direction method of multipliers (ADMM) for deep neural networks training with sigmoid-type activation functions (called sigmoid-ADMM pair), mainly motivated by the gradient-free nature of ADMM in avoiding the saturation of sigmoid-type activations and the advantages of deep neural networks with sigmoid-type activations (called deep sigmoid nets) over their rectified linear unit (ReLU) counterparts (called deep ReLU nets) in terms of approximation. In particular, we prove that the approximation capability of deep sigmoid nets is not worse than deep ReLU nets by showing that ReLU activation fucntion can be well approximated by deep sigmoid nets with two hidden layers and finitely many free parameters but not vice-verse. We also establish the global convergence of the proposed ADMM for the nonlinearly constrained formulation of the deep sigmoid nets training to a Karush-Kuhn-Tucker (KKT) point at a rate of order O(1/k). Compared with the widely used stochastic gradient descent (SGD) algorithm for the deep ReLU nets training (called ReLU-SGD pair), the proposed sigmoid-ADMM pair is practically stable with respect to the algorithmic hyperparameters including the learning rate, initial schemes and the pro-processing of the input data. Moreover, we find that to approximate and learn simple but important functions the proposed sigmoid-ADMM pair numerically outperforms the ReLU-SGD pair.

Mathematics

Audience: researchers in the topic

( slides | video )


ICCM 2020

Organizers: Shing Tung Yau, Shiu-Yuen Cheng, Sen Hu*, Mu-Tao Wang
*contact for this listing

Export talk to